Entanglement Swapping and Quantum Correlations via Symmetric Joint Measurements

Cen-Xiao Huang,1,2,3,* Xiao-Min Hu,1,2,3,* Yu Guo,1,2,3 Chao Zhang,1,2,3 Bi-Heng Liu,1,2,3† Yun-Feng Huang,1,2,3 Chuan-Feng Li,1,2,3,† Guang-Can Guo,1,2,3 Nicolas Gisin,4,5 Cyril Branciard,6 and Armin Tavakoli7,8,§

1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
5Schaffhausen Institute of Technology—SIT, 1211 Geneva, Switzerland
6Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
7Institute for Quantum Optics and Quantum Information—IQOQI Vienna, Austrian Academy of Sciences, Boltzmannsgasse 3, 1090 Vienna, Austria
8Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria

(Received 30 March 2022; accepted 17 June 2022; published 13 July 2022)

We use hyperentanglement to experimentally realize deterministic entanglement swapping based on quantum elegant joint measurements. These are joint projections of two qubits onto highly symmetric, isoentangled bases. We report measurement fidelities no smaller than 97.4%. We showcase the applications of these measurements by using the entanglement swapping procedure to demonstrate quantum correlations in the form of proof-of-principle violations of both bilocal Bell inequalities and more stringent correlation criteria corresponding to full network nonlocality. Our results are a foray into entangled measurements and nonlocality beyond the paradigmatic Bell state measurement and they show the relevance of more general measurements in entanglement swapping scenarios.

DOI: 10.1103/PhysRevLett.129.030502

Introduction.—Entangled measurements, i.e., projections of several qubits onto a basis of entangled states, are an indispensable resource for quantum information processing. They are crucial for paradigmatic protocols such as teleportation [1], dense coding [2], entanglement swapping [3], and quantum repeaters [4,5], as well as for emerging topics such as network nonlocality [6] and entanglement-assisted quantum communications [7,8].

However, while entangled states have been broadly researched [9], the complementary case of entangled measurements has been largely focused on the paradigmatic Bell state measurement, i.e., the projection of (say) two qubits onto the four maximally entangled states |ψ±⟩ = (1/√2)(|00⟩ ± |11⟩) and |ψ±⟩ = (1/√2)(|01⟩ ± |10⟩). This measurement has been experimentally realized in a variety of contexts within the broader area of entanglement swapping and quantum correlations (see, e.g., Refs. [10–20]). Presently, not much is known about the foundational relevance, practical implementation, and overall usefulness of more general entangled measurements.

Recently, a class of entangled 2-qubit measurements has been proposed that is qualitatively different from the Bell state measurement. It displays elegant and natural symmetries and it is gaining an increasingly relevant role as a quantum information resource. These so-called elegant joint measurements (EJMs) are composed of a basis of isoentangled states with the property that if either qubit is lost, the four possible remaining single-qubit states form a regular tetrahedron inside the Bloch sphere. Although originally introduced in the context of collective spin measurements [21,22], they were reintroduced in order to remedy the shortcomings of the Bell state measurement in triangle nonlocality [23] and were later found relevant for quantum state discrimination [24]. Very recently, they have been used as the central component of both network nonlocality protocols, which bear no resemblance to standard Bell inequality violations [25], and full network nonlocality protocols, which constitute a stronger, more genuine notion of network nonlocality [26]. The progress has also motivated recent experiments that realize one type of EJM on a superconducting quantum processor [27] and as a photonic quantum walk [28,29].

Here, we go beyond the Bell state measurement and experimentally demonstrate entanglement swapping and quantum correlations based on the EJMs. We use hyperentanglement between the polarization and path degrees of freedom in a pair of photons to create two pairs of maximally entangled states. Then, we realize a generic quantum circuit for implementing any EJM and report high-fidelity entanglement swapping. We leverage this for tests of quantum correlations in entanglement swapping scenarios, originally developed in [25,26], that for the first
time are not based on the Bell state measurement. These tests, which may be viewed as proof-of-principle tests of quantum networks, are centered about the initial independence of the two entangled pairs.

Theoretical background.—An EJM, labeled by a parameter \(\theta \in [0,\pi/2] \), is a projection onto the following basis of a 2-qubit Hilbert space [25]:

\[
\begin{align*}
|\psi^+_{++}\rangle &= \frac{1}{2} (e^{-i\theta}|00\rangle - r^+_0|01\rangle - r^+_1|10\rangle + e^{i\theta}|11\rangle), \\
|\psi^-_{++}\rangle &= \frac{1}{2} (e^{i\theta}|00\rangle + r^+_0|01\rangle + r^+_1|10\rangle - e^{-i\theta}|11\rangle), \\
|\psi^+_{--}\rangle &= \frac{1}{2} (e^{-i\theta}|00\rangle - r^+_0|01\rangle + r^+_1|10\rangle - e^{i\theta}|11\rangle), \\
|\psi^-_{--}\rangle &= \frac{1}{2} (e^{i\theta}|00\rangle + r^+_0|01\rangle - r^+_1|10\rangle + e^{-i\theta}|11\rangle),
\end{align*}
\]

where \(r^+_0 = [(1 \pm e^{i\theta})/\sqrt{2}] \). We denote the four possible outcomes of the measurement (indicated as the states’ subscripts) by a string of three bits \(b = (b^1, b^2, b^3) \in \{+1, -1\}^3 \) such that \(b^1 b^2 b^3 = 1 \). The elegant property of these measurements is that all basis states are equally entangled and that the two sets of four reduced states, when the right or left qubit is lost, respectively, form two mirror-image regular tetrahedra of radius \((\sqrt{2}/3)\cos \theta\) inside the Bloch sphere, whose vertices are parallel and antiparallel with the Bloch sphere direction \((b^1, b^2, b^3)\), respectively. Notably, for \(\theta = (\pi/2) \), the EJM is equivalent to the Bell state measurement up to local unitaries.

We apply the EJM for entanglement swapping. Consider that qubits \(B_1 \) and \(B_2 \) in the two, initially independent, maximally entangled states \(|\phi^+\rangle_{AB_1} \otimes |\phi^+\rangle_{B_2C} \) are subjected to the EJM. This produces the output \(b \) with probability \(p(b) = 1/4 \) and stochastically renders qubits \(A \) and \(C \) in one of the four isoentangled states (up to complex conjugation). Consider now that the qubits \(A \) and \(C \) can each be independently measured with the three Pauli observables (sometimes up to a sign), specifically \(-\sigma_x, \sigma_y, \) and \(-\sigma_z \). For qubit \(A \) (C) we associate these with inputs labeled \(x \in \{1, 2, 3\} \) \((z \in \{1, 2, 3\})\) and label the outputs \(a \in \{\pm 1\} \) \((c \in \{\pm 1\})\). Examining the correlators between the three measurement events, one finds that \(\langle A_x B^c C_z \rangle = -\{(1 + \pm 1)\sin \theta)/2\} \), where \(\sigma = 0 \) \((\sigma = 1)\) if \((x, y, z)\) is an even (odd) permutation of \((1, 2, 3)\), and \(\langle A_x B^c C_z \rangle = 0 \) otherwise. Moreover, the two-body correlators are \(\langle A_x B^c \rangle = -\langle \cos \theta/2 \rangle \delta_{xx}, \langle B^c C_z \rangle = \langle \cos \theta/2 \rangle \delta_{yy}, \) and \(\langle A_x C_z \rangle = 0 \), and the one-body correlators all vanish. Here, the correlators are defined as \(\langle A_x B^c C_z \rangle = \sum_{a,b,c} a b^c c p(a, b, c|x, z) \) and analogously for the two- and one-body cases.

We can think of these correlations as arising in the simplest quantum network. In general, a quantum network consists of a number of parties that are connected to each other, in some configuration, via multiple independent sources that distribute entangled states. They are natural generalizations of the standard Bell scenario, which features only a single source connecting all parties. Correlations observed in such scenarios are called network nonlocal if they cannot be modeled by associating an independent local variable to each source. This independency is the crucial feature that takes network nonlocality conceptually beyond standard Bell nonlocality (see, e.g., Refs. [30–35]). In our scenario, called the bilocal scenario, a network local model reads \(p(a, b, c|x, z) = \int d\lambda d\mu q^{(1)}_a q^{(2)}_b p(a|x, \lambda) p(b|\lambda, \mu) p(c|z, \mu) \) for some local variable densities \(q^{(1)}_a \) and \(q^{(2)}_b \).

Reference [25] showed that the above quantum correlations are nonbilocial; i.e., we cannot assign local variables to systems \(AB_1 \) and \(B_2 C \), respectively. This is witnessed through the violation of the bilocal Bell inequality

\[
\mathcal{B} \equiv -\frac{S}{3} - T \leq 3 + f(Z),
\]

where \(S = \sum_{k=1}^3 (\langle B^k C_k \rangle - \langle A_x B^c \rangle), T = \sum_{x,y,z} \langle A_x B^c C_z \rangle \), and \(Z = \max(C) \), where \(C = \{|1\rangle, \ldots, |3\rangle \} \) is the list of the absolute value of all correlators that do not appear in the definitions of \(S \) or \(T \). The term \(f(Z) \) is a correction term relevant to the experimental reality that measured correlators in \(C \) will not equal zero. In the Supplemental Material [36], we numerically show that \(f(Z) = Z + 4Z^2 \) is a valid correction term as long as \(Z \leq 0.55 \). The quantum protocol achieves \(\mathcal{B} = 3 + \cos \theta \), which for an ideal implementation \((Z = 0)\) gives a violation for every EJM except the Bell state measurement \((\theta = \pi/2)\). The latter is merely a feature of our quantum protocol. In contrast to many other criteria for network nonlocality, which are tailored for employing the Bell state measurement (see, e.g., Refs. [30,31,37–40]), our quantum protocol and bilocal Bell inequality are not based on using standard Bell nonlocality as a building block for network nonlocality.

The quantum correlations also reveal stronger forms of network nonlocality. Reference [26] introduced the concept of full network nonlocality. Again assuming only the initial independence of systems \(AB_1 \) and \(B_2 C \), the correlations are said to be full network nonlocal if they cannot be modeled by any theory in which one source corresponds to a local variable and the other to a generalized, perhaps even postquantum, nonlocal resource. Notably, many known network Bell inequalities, tailored for the Bell state measurement, fail to reveal full network nonlocality [6].

However, the EJMs enable a successful detection. Full network nonlocality is implied by the simultaneous violation of both the following inequalities [26]:

\[
\mathcal{F}_1 = -\langle A_x B^2 C_3 \rangle - \langle A_x B^2 \rangle
\]

\[
+ \langle C_3 \rangle [\langle A_x B^2 \rangle + \langle A_x B^2 C_3 \rangle + \langle C_3 \rangle] \leq 1.
\]
effectively only a binarized version of the EJM, as only θ is a polarization Bell state of qubits 1 and 2, and this issue by using two different degrees of freedom, path j and 4, respectively.

The given quantum protocol achieves $F_1 = F_2 = \frac{1}{2}(1 + \sin \theta + \cos \theta)$, which is a violation for every $\theta \in [0, (\pi/2)]$. The largest violations are obtained for an intermediate member of the EJM family, namely, $\theta = (\pi/4)$. Notice that these violations are achieved using effectively only a binarized version of the EJM, as only Bob's outcome B^2 appears in the inequalities above. Interestingly, and in contrast to the Bell state measurement, for each setting s_j we change the phase between H and V, in order to realize the C-phase gate. We use the liquid phase crystal to load $\pi/2$ phase on H and V to complete the $\pi/2$ phase gate on the polarization qubit. We realize the phase gate and Hadamard gate by converting the path qubit into a polarization qubit. By cascading these gate operations, we realize the EJM on polarization and path qubits of a single photon. Finally, we check for correlations between the initially independent polarization and path qubits, 1 and 4, by measuring $\{\sigma_x, \sigma_y, \sigma_z\}$ on both sides [see Figs. 2(b) and 2(c)].

Experimental results.—We have implemented eight different choices of the EJM parameter $\theta \in \{0, (\pi/12), (\pi/6), (\pi/4), (\pi/3), (5\pi/12), (\pi/2)\}$. We reconstruct our quantum measurement from the obtained data via measurement tomography following the maximum-likelihood method [47]. In particular, we record a measurement fidelity of 98.5% ± 0.1% for $\theta = 0$ and 97.5% ± 0.2% for $\theta = (\pi/4)$. Details are provided in the Supplemental Material [36]. Moreover, we have measured the fidelity of our entanglement swapping procedure through the fidelity between the EJM eigenstates and the postmeasurement state of system AC. For the two most relevant cases, namely, $\theta = 0$ and $\theta = (\pi/4)$, the average fidelity of the swapped state is 98.5% ± 0.2% and 97.5% ± 0.2%, respectively.

For each of the chosen values of θ, we have tested the bilocal Bell inequality (2) and the criterion (3) and (4) for full network nonlocality. For each setting (x, z) we measure for 10 s, recording approximately 20 000 coincidences. We observe correlations strong enough to demonstrate both nonbilocality and full network nonlocality. For the former, we obtain the largest violation by implementing the EJM at $\theta = 0$, measuring $B = 3.922 \pm 0.018$, while the right-hand side of inequality (2) (its bilocal bound) is 3.092 ± 0.012. For the latter, we obtain at best $F_1 = 1.112 \pm 0.006$ and

![Image](PHYSICAL REVIEW LETTERS 129, 030502 (2022))

Fig. 1. Schematic diagram. Particles 1 and 2 are in a hyperentangled state $|\psi\rangle = |\phi^+\rangle_{12} \otimes |\phi^+\rangle_{34}$ of polarization qubits (p) and spatial qubits (s). The EJM is performed on qubits 2 and 3, while Pauli observables are independently performed on qubits 1 and 4, respectively.

$$
F_2 = -(A_1B^2C_3) + (B^2C_2) + (A_1)(B^2C_3) - (A_1B^2C_2) + (A_1) \leq 1. \quad (4)
$$

The given quantum protocol achieves $F_1 = F_2 = \frac{1}{2}(1 + \sin \theta + \cos \theta)$, which is a violation for every $\theta \in [0, (\pi/2)]$. The largest violations are obtained for an intermediate member of the EJM family, namely, $\theta = (\pi/4)$. Notice that these violations are achieved using effectively only a binarized version of the EJM, as only Bob’s outcome B^2 appears in the inequalities above. Interestingly, and in contrast to the Bell state measurement, for each setting s_j we change the phase between H and V, in order to realize the C-phase gate. We use the liquid phase crystal to load $\pi/2$ phase on H and V to complete the $\pi/2$ phase gate on the polarization qubit. We realize the phase gate and Hadamard gate by converting the path qubit into a polarization qubit. By cascading these gate operations, we realize the EJM on polarization and path qubits of a single photon. Finally, we check for correlations between the initially independent polarization and path qubits, 1 and 4, by measuring $\{\sigma_x, \sigma_y, \sigma_z\}$ on both sides [see Figs. 2(b) and 2(c)].

Experimental results.—We have implemented eight different choices of the EJM parameter $\theta \in \{0, (\pi/12), (\pi/6), (\pi/4), (\pi/3), (5\pi/12), (\pi/2)\}$. We reconstruct our quantum measurement from the obtained data via measurement tomography following the maximum-likelihood method [47]. In particular, we record a measurement fidelity of 98.5% ± 0.1% for $\theta = 0$ and 97.5% ± 0.2% for $\theta = (\pi/4)$. Details are provided in the Supplemental Material [36]. Moreover, we have measured the fidelity of our entanglement swapping procedure through the fidelity between the EJM eigenstates and the postmeasurement state of system AC. For the two most relevant cases, namely, $\theta = 0$ and $\theta = (\pi/4)$, the average fidelity of the swapped state is 98.5% ± 0.2% and 97.5% ± 0.2%, respectively.

For each of the chosen values of θ, we have tested the bilocal Bell inequality (2) and the criterion (3) and (4) for full network nonlocality. For each setting (x, z) we measure for 10 s, recording approximately 20 000 coincidences. We observe correlations strong enough to demonstrate both nonbilocality and full network nonlocality. For the former, we obtain the largest violation by implementing the EJM at $\theta = 0$, measuring $B = 3.922 \pm 0.018$, while the right-hand side of inequality (2) (its bilocal bound) is 3.092 ± 0.012. For the latter, we obtain at best $F_1 = 1.112 \pm 0.006$ and
by choosing $\theta = \pi/4$. We note that our data for $\theta = 0$ also provide a violation of the second bilocal Bell inequality originally proposed in Ref. [25], specifically achieving $B' = 29.333 \pm 0.019$, which exceeds the bilocal bound of 28.531 (see the Supplemental Material [36] for details).

$F_2 = 1.208 \pm 0.006$ by choosing $\theta = (\pi/4)$. We note that our data for $\theta = 0$ also provide a violation of the second bilocal Bell inequality originally proposed in Ref. [25], specifically achieving $B' = 29.333 \pm 0.019$, which exceeds the bilocal bound of 28.531 (see the Supplemental Material [36] for details).
Our complete correlation results are illustrated in Fig. 3. For the bilocality test, we measured \(Z = 0.071 \pm 0.008 \) for the most interesting case of \(\theta = 0 \) and at most \(Z = 0.099 \pm 0.008 \) over all \(\theta \). Taking into account the \(Z \)-dependent correction to the bilocal bound in (2), we record a violation for the first five values of \(\theta \). In addition, we observe full network nonlocality for four different choices of \(\theta \). Although the theory predicts \(F_1 = F_2 \), we consistently find that \(F_2 \) is significantly larger than \(F_1 \). This is attributed to the phase error in the EJM setup. As discussed in the Supplemental Material [36], a small amount of such error induces a considerable offset in the values of \(F_1 \) and \(F_2 \).

These correlation tests are based on the assumption of independent entangled pairs. To reasonably meet this assumption, we have carefully calibrated our setup in order to eliminate potential correlations between the initial system \(AB_1 \) and \(B_2C \). To estimate the accuracy of the state preparation, we have, via state tomography [48], reconstructed the total state and found that it has a fidelity of 99.9% \pm 0.1% with the target state \(|\phi^+\rangle_{AB_1} \otimes |\phi^+\rangle_{B_2C} \). To estimate the correlations between the two joint systems, we have evaluated both the fidelity and the quantum mutual information [49] between the tomographic reconstruction and the product of its reductions to systems \(AB_1 \) and \(B_2C \). We obtain 99.1% \pm 0.1% and 0.048 \pm 0.003 bits, respectively.

Discussion.—Our Letter constitutes a first step toward the experimental realization of entanglement swapping protocols beyond the celebrated Bell state measurement, and our experiments showcase their advantages. On the conceptual side, it is interesting to further understand the role of more general entangled measurements in quantum information processing. Already conceptualizing the extension of the EJM to multipartite settings appears to not be straightforward. On the technological side, a natural next step is to investigate entanglement swapping tests based on EJMs where all qubits are assigned separate optical carriers, i.e., with the help of auxiliary particles or nonlinear optical processes. This would enable the use of deterministic and complete EJMs in proper quantum networks. Also, provided appropriate theoretical advances take place (see, e.g., Ref. [50]), it may be interesting to extend our hyperentanglement-based approach toward proof-of-principle demonstrations of triangle-nonlocal correlations via EJMs [23].

This work was supported by the National Key Research and Development Program of China (2021YFE0113100 and 2017YFA0304100), the National Natural Science Foundation of China (11874345, 11821404, 11904357, 12174367, and 12175106), Innovation Program for Quantum Science and Technology (No. 2021ZD0301200), the Fundamental Research Funds for the Central Universities, USTC Tang Scholarship, Science and Technological Fund of Anhui Province for Outstanding Youth (2008085302), China Postdoctoral Science Foundation (2021M700138), and China Postdoctoral for Innovative Talents (BX2021289). A. T. was supported by the Wenner-Gren Foundations. N. G. was supported by the Swiss National Science Foundation via the National Centres of Competence in Research (NCCR)-SwissMap.

*C.-X. H. and X.-M. H. contributed equally to this work.
\[\text{bliu@ustc.edu.cn}\]
\[\text{cfli@ustc.edu.cn}\]
\[\text{atavakoli@oeaw.ac.at}\]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. S. Takeda, M. Fuwa, P. van Loock, and A. Furusawa,
B. P. Williams, R. J. Sadlier, and T. S. Humble, Superdense
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon,
G. Guccione, T. Darras, H. L. Jeannic, V. B. Verma, S. W.
N. Gisin, Entanglement 25 years after quantum teleportation,
A. Tavakoli, N. Gisin, and C. Branciard, Bilocal
M.-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin,
S. Massar and S. Popescu, Optimal Extraction of Informa-
A. Pozas-Kerstjens, N. Gisin, and A. Tavakoli, Full Network
E. Bäumer, N. Gisin, and A. Tavakoli, Demonstrating the en-
C. Branciard, N. Gisin, and S. Pironio, Characterizing the Nonlocal Correlations Created via Entanglement Swapping,
C. Branciard, D. Rosset, N. Gisin, and S. Pironio, Bilocal versus nonbilocal correlations in entanglement-swapping experiments,
M.-O. Renou, E. Bäumer, S. Lorent, N. Brunner, N. Gisin,
M. Weilenmann and R. Colbeck, Self-Testing of Physical Theories, or, is Quantum Theory Optimal with Respect to
Some Information-Processing Task?,
PHYSICAL REVIEW LETTERS 129, 030502 (2022)

[27] E. Bäumer, N. Gisin, and A. Tavakoli, Demonstrating the entangled states and scalable quantum nonlocality, npj Quantum Inf. 7, 117 (2021).
[33] M. Weilenmann and R. Colbeck, Self-Testing of Physical Theories, or, is Quantum Theory Optimal with Respect to