PHYSICAL REVIEW LETTERS 127, 156002 (2021)

Physically Motivated Recursively Embedded Atom Neural Networks:
Incorporating Local Completeness and Nonlocality

Yaolong Zhang, Junfan Xia®, and Bin Jiang
Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

® (Received 21 June 2021; accepted 7 September 2021; published 8 October 2021)

Recent advances in machine-learned interatomic potentials largely benefit from the atomistic
representation and locally invariant many-body descriptors. It was, however, recently argued that including
three-body (or even four-body) features is incomplete to distinguish specific local structures. Utilizing an
embedded density descriptor made by linear combinations of neighboring atomic orbitals and realizing that
each orbital coefficient physically depends on its own local environment, we propose a recursively
embedded atom neural network model. We formally prove that this model can efficiently incorporate
complete many-body correlations without explicitly computing high-order terms. This model not only
successfully addresses challenges regarding local completeness and nonlocality in representative systems,
but also provides an easy and general way to update local many-body descriptors to have a message-

passing form without changing their basic structures.
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Over the past years, machine learning has achieved
enormous success in many scientific fields, especially in
the development of more accurate interatomic potentials
based on ab initio data for chemical systems [1], including
molecules and reactions [2-7], excited states [8—11], con-
densed phase materials [12—16], etc. Besides using different
machine learning algorithms, these MLIPs mainly differ in
their structural descriptors (or features) which should dis-
tinguish diverse molecular configurations and be invariant
with respect to translation, rotation, and permutation of
identical atoms. In small molecular and reactive systems, it is
well known that a global descriptor like permutationally
invariant polynomials in terms of interatomic distances [5] of
a sufficiently high order, or equivalently fundamental invar-
iants [2], well satisfy both invariance and distinguishability
requirements [17]. However, the size of polynomials scales
factorially with the number of permutations, preventing their
applications in large systems.

On the other hand, most MLIPs for large molecules
and materials rely on an atomic decomposition of total
energy, namely E = > ¥, E;, as first proposed by Behler
and Parrinello in their high-dimensional neural network
(BPNN) approach [12]. In this representation, each atomic
energy is dependent on the corresponding local environ-
ment (within a certain cutoff radius) described by a set of
locally invariant many-body features between the central
and neighboring atoms [18-27]. Because of the high costs
of evaluating higher-order terms, these features are typi-
cally truncated up to three- or four-body correlations.
However, it was recently shown that some local atomic
structures in a system as small as CH,; become
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indistinguishable by the third-order (or even fourth-order)
correlations [28]. This would introduce a distortion of the
feature space and intrinsically limit the representability of
the MLIP [28]. While some approaches [24—-26,29] could
in principle resolve this atomic structural degeneracy by
systematically including higher-order terms, the computa-
tional cost would, however, increase dramatically.

An alternative way to describe an atom-centered envi-
ronment is to repeatedly convolute feature vectors between
every atom and its neighbors by neural networks (NNs) [3],
allowing the information progressively passed among the
central atom, the neighbors, the neighbors’ neighbors, and
so on so forth. Such so-called message-passing neural
networks (MPNNSs) [3,30-32] can learn an increasingly
more sophisticated feature-property correlation from the
training data. However, it is less clear that how this type of
models incorporate many-body correlations by iteratively
integrating (mostly) two-body terms [30,31] (and angular
terms [33,34]) and whether they can resolve the local
structural degeneracy issues discussed in Ref. [28].

In this Letter, to address this challenge, we propose a
physically inspired recursive neural network model that
naturally integrates the message-passing concept into a
well-defined three-body descriptor. We derive that this
model can formulate a complete atomic representation of
the local environment without explicitly computing high-
order correlations and incorporate some nonlocal inter-
actions beyond the cutoff radius, both validated by numerical
tests. Like in conventional MPNN models, however, the
nonlocal charge transfer [35] and conjugated effects [1] are
not yet included and will not be discussed here.
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Let us start with the embedded atom neural network
(EANN) model which adopts the atomistic representation
of total energy and encodes the information of local
environment by the symmetry-invariant embedded density
descriptor [20] inspired by the embedded atom method
[36]. For simplicity, an embedded density invariant (p;) at
the position of atom i is given by the square of the linear
combination of atomic orbitals of its neighbors,
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where F;; =F; —f;, with ;= (x;,v;,2;) and P = (xj,yj,zj)
being the Cartesian coordinate vectors of the central atom i
and a neighbor atom j, r;; = || is the distance between
them, ¢(t;;) is the Gaussian-type orbital centered at atom j
parametrized by its center (r;), width (a), and angular
momenta (L = [, + [, + 1),
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fe(ri;) is a cutoff function continuously damping the
invariant to zero at the cutoff radius (r.), and N, is the
number of atoms within r.. Clearly, p; corresponds to
the embedded density contribution from a given type of
atomic orbital and expresses two-body (L = 0) and three-
body (L > 0) interactions in a uniform way. This can be seen
by explicitly rewriting Eq. (1) in terms of interatomic distances
and angles according to the multinomial theorem [20,37],
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Indeed, Eq. (1) allows the evaluation of atom-centered
three-body terms at a cost of atom-centered two-body ones,
resulting in a linear scaling with respect to the number of
neighbors. As a result, this EANN model is more efficient
than many other descriptor-based MILPs [38], and accurate
in predicting energies [20] and tensorial properties [39,40].

In the CH, example, the C-centered embedded density
invariants and corresponding atomic energies are essen-
tially identical, when two C-centered structures of CH,
have the same list of distances and angles, as displayed in
Fig. 1. This problem intrinsically exists in other three-body
(or lower-order) atomic descriptors [18,19,22,23]. It can be
seen from Eq. (3) as orbital coefficients are fixed after
training (like NNs’ parameters) so that p; are determined by
these distances and angles only. However, considering the
linear combination of atomic orbitals in Eq. (1) as an analog
of a molecular orbital, it is a matter of fact in quantum
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FIG. 1. Two representative pairs of CH, molecules that have the
same set of distances and angles between central C atom (silver)
and neighboring H atoms (white for identical ones and light red
for the different one), for which the EANN (REANN) atomic
energies (in electron volts) for C are identical (distinct).

chemistry that ¢; should virtually vary with the molecular
configuration. One simplest way to cast this physical
concept into the descriptor is to make c; itself a function
of the jth atom’s neighbor environment behaving like the
atomic energy. In this scenario, orbital coefficients of the
four H atoms in the two CH, molecules can be different
since their respective H-centered environments are differ-
ent. This leads to nonequivalent C-centered embedded
density invariants and atomic energies for the two indis-
tinguishable atomic structures by three-body correlations in
Fig. 1. Importantly, atomic orbitals in the vicinity of atom j
have been calculated for obtaining the atomic energy (£;),
thus need not be recalculated to evaluate the environment-
dependent c;.

Apparently, the orbital coefficient can be recursively
embedded in this way whenever necessary and a general-
ized expression is

_ 1=l (=1 Li—1
ci=gj lpy(efh )] (4)

where ¢/~' and ri™! are the collections of orbital coef-
ficients and atomic positions in the neighborhood of the
central atom j in the (¢#— 1)th iteration, p§_1 is the
corresponding embedded density feature vector, g;f' is

an atomic NN mapping p;_l to ¢!, namely the orbital

i
coefficient of atom j as a neighbor of other atoms in the zth
iteration. This procedure is schematically displayed in
Fig. 2(a). One may immediately realize that this recursively
EANN (REANN) model has an effective message-passing
form [1], except that here the orbital coefficients, rather
than the whole feature vectors, iteratively pass the envi-
ronmental information between an atom and its neighbors.
This is an intriguing result that links up, perhaps for the first
time, the local many-body descriptors and the less physi-
cally intuitive message-passing features.

Next, we turn to discuss how higher-order correlations
are incorporated in this recursion, an issue rarely discussed
in previous studies on MPNNs. Supposing that the iteration
undergoes 7 times (7 > 0), it is convenient to use a
simplified version of Eq. (3),
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FIG. 2. (a) Schematic diagram of the REANN model showing
how the density descriptor is recursively embedded. (b) An example
of CH, showing how the C-centered complete five-body correlation
is achieved by twice iteration, where the path going through all
atoms corresponds to the product of F functions and arrows point
from the central atom to neighbor atoms. (c) An illustration that how
the number of three-body terms (F) increases in each iteration (27).
Different colors correspond to different iteration times, namely
T =0 (red), T =1 (blue), and T = 2 (green).
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where the orbital coefficients are now 7" dependent (c]T and
cl) and F(r, i+ Tik» T'jx) Tepresents a generalized three-body
correlation term collecting these functions in Eq. (3).
Substituting Eq. (4) into Eq. (5) and assuming no hidden
layer in g7 " (i.e., a linear function), we have

N, N,
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where w,, and w,,, are linear weights of the corresponding
features, N P is the number of embedded density invariants.
Note that using a nonlinear g} ' here would not alter our
conclusion but will complicate this equation. We then
substitute Eq. (5) in the (7" — 1)th iteration back to Eq. (6)
and reorder the summations,
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As orbital coefficients are expanded, the number of
three-body functions doubles in each iteration till the last
environment-independent ones, as illustrated in Fig. 2(c).

This will make p! eventually the sum of products of
(27! — 1) three-body F functions after T iterations, which
can be generalized as

27+]_1

pszﬂm H F(rij rigs Tjx) (8)
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where m collects all indexes of the summation, 7, is the
collection of all weights and orbital coefficients, and i, j, k
span over all atomic indexes involved. According to above
discussion, p! will contain at least one highest-order
correlation term involving 3(27*! — 1) nonredundant inter-
atomic distances in the neighborhood of atom i with
sufficient neighbors, along with some lower-order terms
due to repeated interatomic distances. Regarding atoms as
nodes and interatomic distances as edges, the highest-order
correlation term can be viewed as an analog of the Eulerian
path in graph theory (a path in a finite graph passing every
edge just once), except that in our case this path can pass
the same edge more than once. Figure 2(b) illustrates such a
path walking through all edges in CH, after two iterations.
Examples for lower-order correlations are provided in
Supplemental Material (SM) [41].

By definition, a complete many-body descriptor has to
correlate all atoms in the system [46]. This implies that p!
will involve a complete correlation of an atom-centered
environment, if 3(27*!' —1) > N.(N.—1)/2. The minimum
number of iterations to warrant this is thus given by
Tin = (logo{[N.(N. —1)]/6 + 1}) — 1, where () rounds
up the value to its nearest integer. Recall that the cost of
each iteration scales linearly with N and atomic orbitals
need be calculated only once. This is a striking finding that
the complete atomic representation can be achieved with
~O(log,N,) complexity, instead of the exponential scaling
with the body order when explicitly computing high-order
correlations [29]. Our approach will be increasingly more
favorable as N, increases.

Similarly, this analysis can also estimate the required
number of interaction blocks (or the time of message
passed) in other MPNN models, which was often empiri-
cally specified without a guidance. This number has to be
greater than N.(N, — 1)/2, theoretically, if only two-body
features were recursively embedded (e.g., in SchNet [30]),
because each iteration now introduces only one more
interatomic distance toward the higher-body correlation.
It is even worse that using radial functions alone actually
does not warrant the local completeness, because atoms
with distances greater than r,. cannot be correlated in any
way. Examples are given in the SM. It is also found in other
more recent MPNN models that including angular infor-
mation in the feature update is beneficial [33,34], consistent
with our derivation. Note that our practical implementation
remains based on Egs. (2) and (4) for numerical efficiency.
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To validate our derivation numerically, we use the CH,
dataset provided by Ceriotti and co-workers as a stringent
test [28]. This dataset includes ~7.7 x 10° configurations
with randomly distributed atoms excluding structures with
too close contacts. Because of the existence of near
degenerate manifolds and many unphysical configurations
with energies up to 70 eV, this dataset has been claimed to
be the best touchstone of the representability and com-
pleteness of the descriptor. Since there are only five atoms
in CHy, we estimate that many-body correlations become
complete at T, = 2. We have optimized r,, @, and c;
together with all NN parameters, as readily implemented in
PyTorch [42], yielding an end-to-end deep learning frame-
work. To demonstrate the performance of the features
themselves, we also train linear models by removing all
hidden layers of NNs (for both orbital coefficients and
atomic energies). Details of training are given in the SM.

Figure 3(a) compares the test root-mean-square errors
(RMSEs) of various linear models as a function of the
number of training configurations (n.,,). The learning
curve of 7 =0 (including three-body correlations only)
exhibits a clear saturation with respect to n,;,, which is
fully consistent with the result of Ref. [28] using three-body
power spectrum features. Recursively expanding orbital
coefficients steepens the learning curve and reduces the
error significantly. The result with a single iteration (7" = 1)
obviously outperforms that from Ref. [28] obtained with
the mix of three- and four-body (3B + 4B) correlations.
With two iterations (7' = 2), which are supposed to offer a
complete correlation, we observe a saturated error of
~0.6 kcal/mol with 10° points. This is in good agreement
with that of Nigam et al. [29] who used an iterative
contraction algorithm to select up to five-body (5B)
invariants (the highest-body correlation for CH,). These
results clearly indicate the local completeness of our
recursively embedded density descriptor.

Incorporating the nonlinearity of NNs substantially
increases the flexibilities of all models. As shown in
Fig. 3(b), 3B 4 4B correlations in Ref. [28] trained with
3x 10% points led to an RMSE of ~0.5 kcal/mol.
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FIG. 3. (a) Comparison of the RMSEs for energies of random

CH, configurations of linear fits in Ref. [28] (with 3B + 4B
correlations) and [29] (with 5B correlation), and that with the
recursively embedded density descriptor (7' = 0, 1, 2). (b) Similar
to (a) but all results are now based on nonlinear NN fits.

Impressively, our EANN model (7" = 0) gives a much lower
learning curve, exhibiting its superior performance despite
its three-body nature. The lower error may be due to the
deeper NNs used in our EANN model, but one shall note that
much fewer invariants are used as the input (45) here than
that (2000) in Ref. [28]. The model accuracy increases with
T, although the improvement from 7 =1 to T = 2 is less
significant than that from 7 = 0 to 7 = 1. This is consistent
with the fact that 7 = 1 already includes eight interatomic
distances of CH, [see Fig. 2(b)] that are close to complete
(10 distances in total). The learning curve more or less
converges at T = 2, whose errors are one order of magnitude
smaller than those with 3B + 4B features [28], and those
with the contracted 5B features [29]. We find that other
MPNN models [30,33,34] also perform better than the
purely local descriptor-based model [28] (detailed in the
SM). This provides more convincing evidence that iterative
message passing can include more complete correlations to
better represent the atomic environment.

An additional advantageous feature of the REANN
model is its effective description of some nonlocal effects.
This is because the correlations between atoms inside and
outside the cutoff sphere have been implicitly encoded
when iteratively updating orbital coefficients, as illustrated
in Fig. 2(a). We demonstrate this in bulk water, an
important benchmark to demonstrate the power of
MLIPs. We first use a dataset with 1593 structures of
64 water molecules computed by Cheng et al. [45] for
developing a BPNN potential [12]. The cutoff radius of
BPNN potential was set long enough (r. = 6.2 A) to
describe the strong hydrogen bond interactions. With an
optimal selection of symmetry functions (3B features), the
reported RMSEs of the BPNN potential are comparable to
those of the EANN model [38] with the same r,, as listed in
Table I. Impressively, our REANN model (7" = 3) greatly
outperforms these two purely local descriptor-based coun-
terparts, leading to a smaller error of force with merely half
of the cutoff radius (r, = 3 A). Apparently, this cutoff only
incorporates the interactions between a water molecule and
some nearest neighbors, but the second neighboring shell is
implicitly correlated by the message-passing way of updat-
ing orbital coefficients. The performance of the REANN
model further improves with the increasing r,. and saturates

at r, ~5.5 A, yielding less than half of the RMSEs of the

TABLE 1. Test RMSEs of energies (meV/atom) and forces
(meV/ A) for bulk water using the dataset in Ref. [45].

Model REANN (T = 3) EANN' BPNN
r.(d) 30 35 45 55 62 62 6.2

Energy 28 15 L1 09 08 2.1 23
Force 104.4 731 58.0 51.1 532 129.0 120

*Values taken from Ref. [38].
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BPNN potential. It is worth noting that the SchNet model
performs less well in this condensed phase system, due
presumably to that more interatomic distances are greater than
r. and corresponding atoms cannot be correlated by two-body
terms. To avoid any data bias, we simply test another dataset
of water trained by Zhang et al. using the deep potential
molecular dynamics (DPMD) method [14] with . = 6.0 A.
Our REANN model (T = 2) with r, = 4.5 A gives RMSEs
of 0.2 meV/atom (energies) and 15.9 meV/A (forces),
again less than half of the reported values in Ref. [14].
These results suggest that the REANN model captures
nonlocal interactions more efficiently than simply extending
the effective cutoff radius in complex systems.

Summarizing, we make a physical adaption of the local
descriptor-based EANN model to generate the REANN
model and reveal its connection with other less physically
intuitive MPNNs often inspired from graph neural net-
works in computer science. We formally derive that how
the many-body correlations are introduced by iteratively
passing messages (updating orbital coefficients here) and
prove that this is a more efficient way to achieve a complete
description of the local environment, without explicitly
computing high-order features. Numerical tests demon-
strate the local completeness and nonlocality of this new
model, warranting its superior accuracy among existing
ML models. Our strategy can be easily adapted to improve
other sophisticated many-body descriptors without chang-
ing their basic structures, for example, by making atomic
weights of the weighted atom-centered symmetry functions
variable with its local environment [23] or adding such
learnable coefficients to the DPMD descriptors [14]. We
believe this will open a new window for developing more
accurate and efficient ML models of more complicated
physical systems.

All datasets can be found in the original publications.
The reported machine-learned models are openly available
from the GitHub respository [47].
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